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THREE-BODY COLLISIONAL RECOMBINATION OF CESIUM SEED
IONS AND ELECTRONS IN HIGH-DENSITY PLASMAS
WITH ARGON CARRIER GAS®
by John V. Dugan, Jr.

Lewis Research Center

SUMMARY

The rate of three-body recombination between cesium seed ions and elec-
trons in an argon carrier gas is calculated for free-electron number densities

of 103 to 108 per cubic centimeter and electron temperatures of 500° to
lO,OOOO K. These ranges correspond to plasmas of interest for magnetohydro-
dynamic power generation. Only monatomic cesium ions are considered in a
collisional approximation where radiative transitions are ignored. The Byron
method is applied to describe collision-induced transitions between atomic en-
ergy levels by the semiclassical Gryzinski cross sections and the principle of
detailed balancing. Recombination is limited by deexcitation due to super-
elastic collisions.

Results are in fair agreement with those of a more approximate study of
potassium for 500° to 2000° K. Discussion of the results as related to conduc-
tivity in magnetohydrodynamic power generation and comparison with recombina-
tion experiments are included. The computer program for a general recombina-
tion study of an atomic ion is included as an appendix.

INTRODUCTION
Recombination Problem in the Magnetohydrodynamic Generator

The requirements of magnetohydrodynamic (MHD) power generation set lower
limits on allowable conductivity values for gas dynamic systems employing
alkali-seeded rare gases. The electrical conductivity in the generator duct is
a function of the free-electron number density N, which must be maintained by
electron-atom ionizing collisions. However, if the electrons initially pro-
duced by ionizing collisions recombine with positive ions in a time that is

*A brief summary of some of the results presented in this report was given
at the American Physical Society Meeting, Plasma Physics Section, San Diego,
Calif., Nov. 2-6, 1963.



short compared with a characteristic ionization time, volume recombination will
severely inhibit attaimment of the conductivity values required for efficient
generator operation. A recent paper predicts high recombination rates for a
potassium ion plasma over all number densities in an electron temperature range
from 500° to 2000° K (ref. 1). The object of the present report is to estimate
the net rate of electron-ion recombination in a plasma of argon (ionization
potential, 15.76 ev) seeded with varying percentages of cesium vapor (ioniza-
tion potential, 3.89 ev). These gases have been considered a promising
carrier-seed combination for magnetohydrodynamic power generation; consequent-
ly, the system has been the subject of extensive study (refs. 2 and 3).

Selection of Electron Capture Mechanism
It is well documented that three-body capture
Cst + e~ +e” - Cs® + e~ (K.E.)

ig the initial step of the neutralization process in the plasmas of interest
(refs. 1 to 4); Cs* represents an excited or ground-state seed atom. This
capture step is a radiationless process where the second electron carries away
the excess energy as kinetic energy. D'Angelo performed a calculation on a
fully ionized gas composed only of protons and electrons (ref. 4). He postu-
lated the aforementioned three-body initial capture step and predicted recom-
bination rates in agreement with several sets of experimental data, but his
model has since proven inadequate for dense plasmas (N, > 1012 cm‘5) because
he ignored deexcitation collisions (ref. 5). Bates, et al. (ref. 2) and the
investigators of references 1 and 3 have performed more general studies in
which they have included this effect.

It was proposed in reference 6 that the neutral carrier atom is the third
body for certain cesium seeded systems. This cannot be the case for the seeded
argon system because of efficlency requirements for energy transfer in the
three-body encounter. The electron, on the average, can transfer only the
fraction 2m_./M of its translational energy to a neutral argon atom in an
elastic collision where m, and M are the electron and neutral masses, re-
gspectively. Since the first excited state of argon lies 11 electron volts
above the electronic ground state, only very few electrons could transfer en-
ergy inelastically to the atomic third body for the 0o values of interest.

As a result, only electrons in the extreme low-energy portion of the Maxwellian
distribution can successfully engage in a one-act capture process where an atom
serves as the third body. On the other hand, electrons can exchange any amount
of kinetic energy in their collisions with one another and thus would be the
most effective third bodies for recombination.

Byron Approach
Once electrons are captured into excited states of the atom, they are not

considered to have recombined effectively with the ion since they may have &
high probability of being reionized. Byron, et al. (refs. 1 and 3) have shown
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that the rate-limiting step in the "chain" of three-body-recombination pro-
cesses 1s the deexcitation of captured electrons. Their model utilizes the
rate~process principle that the slowest step in a rate mechanism is the limit-
ing step. As the system approaches equilibrium, the rate at which electronic
levels are crossed in the downward direction toward the ground state determines
the net recombination rate. This is true because once the electron has reached
the ground state it has a much smaller probability of being reionized than it
had in the higher states.

The authors of reference 3 have shown that there is a minimum in the elec-
tronic deexcitation rate at a particular atomic energy level. The location of
this level depends strongly on the temperature of the free electron gas.

In their application of the rate-limiting model to potassium ion-electron
recombination, Byron, et al, assumed that the electronic levels above and below
a quantum state L¥ are continuous bands of energy levels rather than discrete
states. They did not list the states included in thelr study nor the degener-
acies assigned to those states. In addition, they approximated the slope of
the Gryzinskl cross section by a linear function in the electron temperature
range, 500° to 2000° K, over which the calculation was performed.

The present report uses the same cross section expressions, in an exact
fashion, with the rate-limiting model just described, and applies the method to
cesium recombination. It proposes to assess the accuracy of the approximations
given in reference 3 and extends the range of the recombination coefficients to
temperatures from 2000° to 10,000° K. Any quantum effects obscured by the
continuum approximation of Byron, et al. should appear in this more exact
study. Further, the information contained herein is designed to provide a
basis for calculating recombination in high-pressure plasmas in addition to
assessing the assumptions of the Maxwellian distribution function and the ne-
glect of radiation.

The computer program for treating this three-body recombination of any
monatomic species is described in appendix D by L. U. Albers. This program is
included so that investigators can readily perform machine calculations on sys-
tems of interest.

PRESENT STUDY
Scope

The recombination model adopted herein is applied to calculating net re-
combination rates for electron number densities N from 1013 to 1018 parti-
cles per cubic centimeter and electron temperatures 6, from 500° to 10,000° K
for a conventional range of cesium seed fractions from 5x10™% to 1072, (A11
symbols are defined in appendix A.) These are the ranges of interest for
magnetohydrodynamic generators. Number densities below 1015 per cubic centi-
meter will not provide sufficient conductivity for generator operation, while
number densities of ionized seed N, (where Ny = Ne) greater than 1018 per
cubic centimeter correspond to neutral-carrier-gas densities of at least 1020




region, N, greater than 1018 per cubic centimeter, significant overlap of cap-
ture orbitals for electrons may preclude employment of the adopted recombina-
tion model, since collective interactions become important. With regard to
electron temperatures, it appears that the most promising systems may make use
of the high nonequilibrium 6, values from 2000° to 8000° K (ref. 7); however,
the electrons must be "Joule heated" from the static gas temperature, and this
necessitates a recombination study at A values down to 500° K. This temper-
ature is a safe lower 1limit, since the coldest electrons will be at least in
thermal equilibrium with gas atoms.

Collisional Approximation

It is assumed that all deexcitation i1s collisional so that all radiative
deexcitations can be neglected. The validity of this assumption is discussed
in appendix B, which indicates that radiation from excited seed atoms is negli-
gible down to N, values of about 1014 per cubic centimeter for all electron
temperatures. Two-body electron-ion radiative recombination is also negligible
in the Ng range considered. Further, it is assumed that the sole ionic spe-
cies of importance is the cesium atomic ion; that 1is, the relative abundances
of argon-cesium ions (ArCs+) and argon ions are very small compared with the
cesium ion concentration. This is a good approximation, since the argon-cesium
ion (ArCs¥) is bound by weak polarization energy of less than thermal energy
even at the lowest temperatures, while ionization of argon will have a rela-
tively long relaxation time compared with cesium ionization (ref. 8). Thus,
argen can effectively be neglected; preliminary calculations indicate that this
is a good approximation to seed fractions of 2x10~% for temperatures below
8500° K. At higher electron temperatures there may be some ionization of ar-
gon, at least near the entrance region of the generator duct for representative
gas residence times (ref. 9).

Distribution Punction Considerations

Throughout this study, it 1s assumed that a Maxwellian distribution of
Tree electrons is preserved in the plasma. This is a reasonable assumption for
the argon-cesium seed system, as can be shown from collision-frequency consid-
erations. The electron-electron monoenergetic collision cross section for mo-
mentum transfer at these low energies (<1 ev) is relatively high, as seen even
for the hard-sphere low estimate, which can be written as Qe = 656/W2 ang-
strom? (ref. 10). The quantity w 1is the kinetic energy of the electron in

electron volts. The related collision frequency is glven by Vee = NeoQueVes
where V., 1s the relative velocity of the electrons. The frequency of
electron-neutral encounters 1s given by vg, = N QepVep, Where N, 1is the

neutral argon number density, Qu, 1s the elastic electron-neutral collision

cross section, and Ven is the electron-neutral relative velocity. Even

though N, 1s less than or equal to 10-2 N, for the plasmas of interest, the
Vee value will nevertheless be greater than Ven’ because, due to the Ramsauver
effect (ref. ll), the argon atoms are virtually transparent to electrons in the
range of energy from O.1 to 1.0 electron volt, so that the average Qg 1s




only 3 angstromsz. This value is the average value of Qe from 0.1 to

1.0 electron volt for Maxwellian distributions of electrons at each electron
temperature. Elastic collisions between electrons and seed atoms are assumed
to have maximum cross sections of the order of the Qee Value. This latter
assumption is well founded since the (pessimistic) minimum Qe (at 1 ev) is
656 angstromsz, while the maximum calculated Qg, for cesium neutrals is

600 angstroms2 (averaged over the Maxwellian distribution at 0.5 ev, ref. 12).
Consequently, the electron collision frequency 1s certainly greater than either
electron-neutral (carrier or seed) collision frequency. The assumption of a
Maxwellian electron distribution should therefore be valid.

DETATLS OF CALCULATION

The deexcitation rate Rdex is defined hereln as the rate at which elec-

trons in discrete energy states K above a state L* can pass downward either
to L¥ or past that state to all states L below it, across the energy gap
K* - 1L*, where K¥ = L* + 1. It is assumed that all the electronic states are
it equilibrium with the free electrons at the electron temperature. This is
not quite true for the lower states, whose populations are less than the equi-
librium values because they require a longer time to attain equilibrium popula-
tions. To account for these and other nonequilibrium effects, a temperature-
dependent factor vy d1is Introduced to relate the minimum deexcitation rate to
the recombination rate.

For a hypothetical nonequilibrium situation (1) with no reexcitation oc-
curring during the period of deexcitation and (2) state populations above the
limiting gap equal to equilibrium values, y would be unity, and the net recom-
bination rate would be equal to the deexcitation rate for the slowest or rate-
determining transition. Clearly, at equilibrium where Rdex = Rex across all
gaps, there is no net recombination and y must be zero. The calcylation of
recombination rate, therefore, consists of determining the minimum deexcitation
rate and the value of 7y for the range of electron temperatures and densities

of interest.

Collision Cross Sections and Deexcitation

For a one-electron outer shell, such as that of the singly excited or
ground state cesium atom, the ionization potential (or binding energy) is equal
to the kinetic energy of the bound electron. Gryzinski (ref. 13) has derived
cross section expressions for the inelastic collision of an electron with an
atom by treating such a collision as a classical encounter between the free
electron and the bound electron. Although these expressions predict a low
value and the wrong energy dependence of the ionization cross section at the
threshold (ocEl/2 instead of the experimentally observed «E (ref. 14)), they
should be satisfactory for calculating the recombination rate within a factor
of two to four (ref. 15). Experimental error in recombination-rate measure-
ments is somewhat less (refs. 5 and 16), so that discrepancies between pre-
dicted and observed rates can be explained, at least, in part, as due to in-
adequate cross sections.




The main deexcitation route in the range of interest for N, and 6, 1s
through superelastic collisions whereby the incident (free) electron receives
the energy of atomic deexcitation from the bound electron as increased kinetic
energy (refs. 1, 2, and 16).

‘In the Byron approach, the deexcitation rate is not computed directly
through the deexcitation cross section but must be obtained from the excitation
rate by using the statistical mechanical principle of detailed balancing
} (ref. 17). The inelastic excitation cross section necessary to calculate the
| excitation rate is discussed in the following section. The Gryzinskl expres-
sions have been remarkably successful (in view of their derivation on a purely
semiclassical basis) in predicting collisional excitation probabilities from
ground to lower excited states for some atoms.

Energy Levels of Cesium Atom Quantum Degeneracy

The first 70 observed spectral levels of the cesium atom selected for the
calculation are taken from reference 18. Because of pressure and Doppler °
broadening (ref. 1) and external magnetic-field effects (B may be as high as
20,000 gauss), it was thought reasonable to assume that energy states separated
by 30 wave numbers or less are effectively degenerate in energy. The 47 elec-
tronic "uncollapsed" states are listed in table I with their binding energies
E;. The n and 1 values are the principal and secondary (orbital) quantum
numbers, whereas Sp = 1/2 is the spin of one unpaired electron in units
of H.

The total degeneracy of an electronic energy level o 1is given. Spin-
orbit coupling removes the spin degeneracy, giving rise to the spin-orbit quan-
tum number J = 1 % Sp.

Eighteen of the listed levels are nondegenerate in J value. The remain-
ing 29 levels denoted by asterisks are degenerate levels. Seven of these
states degenerate in J are s states (1 = 0) where the spin degeneracy can
only be removed in an external magnetic field. The other 22 states are p, 4,
f, g, and h states (1 = 1 to 5) where 1-s coupling is not strong enough to
split the levels by more than 30 wave numbers (cm‘l) in energy.

Excitation Cross Section
The cross section (cmz) for inelastic collision between an incident elec-

tron with energy Ep and an atomic electron with kinetic energy (or binding
energy) By occurring with an energy loss greater than AE is (ref. 13)

3/2 2
E, ) 2 <El AE Eq AE

(o
0
Qex(Ep,B1,0E) = — (El 5 3\E)TE\ )\ (12)

for AE + Eq < Es




and

GO EZ 5/2 2 El AR E z
1/2
Cog)e-g) oo

for AE+E12_E2

In both expressions

1l

2
4(EV 2 2
Oy = me (erg) cmé erg

4
» (4.8x10-10)
(1.6x10712)?

6.53x10"1%4 (cm?) (ev?)

where e 1s the electronic charge.

The mean product of cross section and velocity (cm®/sec), integrated over
the Maxwellian distribution, for the excitation of an electron from an energy
level I up to an energy level K is (ref. 19, pp. 677-699)

(¥ (D » K)) = 0| 1 /m 6(B,B )
x o AEE,K her 2B, 08, ¢

®

1

- __E____.//r G(Eg,Eq A8y, yi1) |F(Ey,ER)Ep dBp (2)
K+l AEL,K+l

where G(Ep,Eq,AE) is the function in braces of equation (la) or (1b),

-E., /k6 :
F(E),By) = [Ey/(By + Ez)]5/2 e 2/ €, and C, 1is the normalization factor
for the Maxwellian distribution function, (zﬂkee)S/z(me)l/Z.



An electron that is excited above the level X, (AE > AEL g)s but not as
high as the level K + 1, (AE < Aﬁi K+1)’ can reach the level K by emitting

radiation. This is a physical ba81s for the two lower limits in the integral
expression for the mean excitation cross section.

The appropriate Qex should be employed for the two sets of conditions
mentioned in equations (1a) and (1b).

Excitation Rate and Detailed Balancing

The corresponding rate at which electrons can be excited from the state L
to state K 1is

Toy = NeNL<(QL,K)V> em™S sec~l (3)

The rates of the inverse processes, excitation and deexcitation, are equal
provided that the sum of the frequencies for superelastic collisions from each
state K to all possible states L is larger than the sum of the Einstein co-
efficients, which are the transition probabilities for radiative emissgion from
the upper state. This condition defines detailed balancing, according to

which, if a Maxwellian distribution of electrons is assumed, the deexcitation
rate Tgey bPetween any two states is equal to the excitation rate r.,. The
deexcitation rate from state K +to state 1 can be written
L) A /k6
L e
Tdex © NeNK Uy ’ <(QfL,K)V> (4)

((a 1,07 (e eAEK’L/kGe
% &V g

the ratio of the deexcitation colli-

sion coefficient to the excitation

where is

collision coefficient. In equa-
. tion (4) w;, and are the total
= -degeneracies of the levels L and
K=Ke+l ——r K- K= K= (27 + 1).
}Sammegap J
L=L-4 The rate of deexcitation Rgex

across a gap K¥ - L¥ is the sum of
H the rates at which K* and all states
K above the state K¥ can be de-
excited by superelastic collision
either past the state L¥ +to all
states I below L* or to the state
Ground L¥. Figure 1 schematically displays

L
L

state T L=1

Figure 1. - Schematic energy level diagram for cesium atom that shows
sample gap.

8

the arrangement of energy levels and
gaps for cesium below the electron
continuum, which is indicated by the



solid dark area. The rate Rdex can be written

K=N T.=L%
Rgex = Z Z Taex (5)
K=K*© T=1

where all states K are above K* and all states L are below L* as indi-
cated in the figure, and N, the total number of states, is equal to 47.

In all cases, the population (cm™2) Ny of the state K is given by the

Saha equation since, as mentioned, the bound states are assumed to be in equi-
librium with the free electrons. Each population is given by

3/2

“k n® By /K6 2
K ~ w.w; \2mm k6 © Ne
e—-i e™Ve
where is the binding energy of level K (its previously introduced B

value), Wg is 2 for the free electron, and wy; 1is 1 for the degeneracy of the
cesium ion.

Estimation of y. - The value of y 1in the relation R, = 1(R ) .
R —_ ec dex min

is an indication of the magnitude of nonequilibrium effects {(refs. 1 and 3)

and is a function of electron temperature. This factor must account for the
fraction of the minimum deexcitation rate that is balanced by excitation as the

system approaches equilibrium, as well ag for nonequilibrium populations.

The deexcitation fraction as well as the excitation and deexcitation
cross sections for important transitions across the gap are calculated by com-
paring relaxation times required to attain equilibrium for states above and
below the minimum. The ratio of these cross sections contains the factor

/ xElI k&
(QL/@K)e ’K/ € vwhere ABy o 1s the energy difference and the o values
2

are the degeneracies for the significant transitions.

At the lower electron temperatures, where the rate-controlling gap is lo-
cated between high quantum states, neither capture rates nor state populations
differ much for adjoining states above and below the gap, consequently, re-
excitation is important. The energy differences for important transitions are
less than kOg, so that the excitation cross section is usually comparable to
the deexcitation cross section. Therefore, for low electron temperatures,
500° to 3000° K, the deexcitation fraction must first be determined by detailed
examination of the significant excitation cross sections, and then the popula-
tions of the states above the gap are corrected for their departure from equi-
librium values to obtain the ¢ factor.

At high temperatures, where the (6p - 6s) gap controls the rate process,
capture rates are very different for states above the gap and the ground state,
80 that the deexcitation fraction is near unity and vy must account only for
the inaccurate populations of the 6p state and several states above it.



In either case any inaccuracy involved in estimating 1 i1s well within
the error due to the collision cross sections. These considerations yield es-
timates for 7y of 1/3 up through 2000° K, 1/2 from 3000° to 5000° K, and 2/3
for 5000° to 10,000° K.

RESULTS AND DISCUSSION

The plot of Rdex(cm‘5 sec~1l) against the mean gap energy,
1 R R . . .
EX = By + 5 (g, - Ex) calculated from equations (4) and (5), is given in fig-

ure 2 for 6, = 1000° K and Ny = 10%° per cubic centimeter. The values for
these energy gaps are given in

i i ! 1 i ! ! ! ! 0
_____ Potassium  Byron, etal. (ref. 1) | table II. The dashed curve is
) Cesium -  Present study a similar plot from reference 1
1077 for potassium and shows a more

regular behavior than the
points obtained in the present
o study. It should be noted that
o Byron, et al. (ref. 1) assumed
that the levels above, as well
10% , > as below, L¥ are continuous
rather than discrete and also
that the slope of the Gryzinski
° cross section can be approxi-
o o mated by a linear function in
o |© the range of 6, from 500° to
//6 2000° K. 'There is more quantum
o //4 fine structure in the results
a0 oy Locus of of this study although the min-
. minimums _| imum Rdex(WhiCh gives Rrec)
__éf ,”\———Q"-;;/“’_"—k~ is not too different in E*
value from reference 1. This
agreement is expected since
R o) min o le 1 these two alkalis have qualita-
—____=Rmcfw{ugrm*1m}%p:j~ tively similar arrangements of
’ atomic energy levels.

05—

1024

QéﬁpN
|
\
\
\

|

Deexcitation rate of bound electrons, Ryexs (cm'3)(sec'1)

The locus of minimums in

mz; 9 4 6 L 3 L0 19 figure 2 denotes the gaps
' ) ) Ei-qu ) ) K¥ » L* +that have the lowest

Mﬁngmenﬂw'p=‘ﬁK+ Z J'W Ry, values in the various

Figure 2. - Deexcitation rate as function of mean gap energy. Electron ranges of E* at 6 = 1000° K.

number density, 10b per cubic centimeter; free-electron temperature, The recombination rate is one-

oor° K. third the value of the minimum
of the locus curve, which occurs in this case for the (128, 8f —» 104) gap at

E*¥ = 0.23 electron volt.

Figure 3 shows the recombination rate R,... as a function of electron

temperature 6, in the range 500° to 10,000° K. It is clear that the locatlon
of the rate-limiting mean gap energy E¥ is depressed with increasing tempera-
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ture. It should be noted

10, 000,000x103%7 that the (6p - 6s) energy

p _;El IFreelelectr!on Frlee- ! Source ] difference results in a
ot 110gp T g:n':?gr’ t?;;t;?; : relatively long time for
\ Ng ture, the ground state to come
1,000, 000 N - O, E to equilibrium so the de-
\\ = oK ] excitation is only
# 12, 80~ 10digap— L7xol3 1075 ] slightly balanced by ex-
100,000 \ i o 5.9x1013 3020 }Ref' 16 citation. At tempera-
' \ =, 203 2000 tures above 10,000° K,
\\ I - 302 2000 }Ref' u ] two-body radiative recom-
\\ o o 5x1012t05x1013 2000 Ref. 22 (cesium 1 bination becomes impor-
0,000 (Tp = Ts)gap= seed in argon)s tant along with quantum
—a— Present study ] effects, so that the

—-o-—Byron et al {ref, 1)

purely collisional form

r_ 3
g‘ap B of a' =R../NJ is no

\>
{(Ip-~17s

E

Collisional recombination coefficient, apoc, (cmyisec™])
P

i ——\ ] longer adequate.
X {Tp ~ Ts)gap The temperature de-
100 ~ e pendence in the range
AN L 500° to 2000° K is much
b <] (6p = 6s)gap the same as the dashed
\ \ curve shown for the work
10 ’\\ S = of Byron, et al. (ref. 1)
}\\A N —] in figure 3. This tem-
) perature coefficient '
is similar to the o of
10 2000 4000 6000 8000 10,000 12,000 reference 2, which is a
Free-electron temperature, ey, °K treatment of a quite dif-

Figure 3, - Three-body collisional recombination coefficient as function of ferent nature fr(?m the
free-electron temperature for range of electron number density 1017 to 1018 present calculation. Ad-

per cubic centimeter. ditional calculations
that were performed with
59 discrete energy levels showed that "collapse" of energy levels separated by
small gaps, which produces new w values, changes the calculated rates by only
several percent at most. The temperature dependence of o' goes from 6;5 in

the range 500° to 3000° K to 6&9/2 in the range of 6, from 4000° to
10,000° K compared with the eé9/2 dependence of reference 5.

1

The results shown in figure 3 are in good agreement (within a factor of 2)
with the experimental findings of reference 20 for a cesium plasma with Ng
values from 1x1012 to 6x1013 per cubic centimeter and 0 values from 0.11 to
0.26 electron volt. They also agree closely with the data of reference 21
taken for a pure thermal cesium plasma in the ranges of N, of 5x1012 o
103 per cubic centimeter and 6, of 2000° to 2500° K. Since both radiative
deexcitation and trapping of resonance radiation occur in these plasmas for XN
values of interest, it is pointless to offer a refined interpretation of the
difference between experiment and theory.

The theoretical results are also in good agreement with the low electron

11
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temperature experimental data of reference 22 for an argon plasms seeded with
cesium, which is in excellent agreement with the theoretical value of refer-
ence 5.

The recombination results for a modified D'Angelo approach (ref. 4) are
shown for comparison in figure 4. This supplementary calculation was done in

10, 000, 000x10727 ; - . gz o

=1 LT ] L

——0—— Modified D'Angelo mode!

=
1
\
——
\
T
\

1,000,000 L - |
g ——o—— Present study —
iV P - 4 .
L\ _ ]
- ¥
2 \
2 100,000 A
OE _____\\_\__:_ B L - ]
L \\\ - - i 1T
S 4 - —
= 2 \i& - |
E‘ 10,000 ) .\ - P il — —
3 \ '
=
-
8
s
% 1,000
£
E=}
=
o
e
s
iS5 100
»
=
[
10
1 - |
0 2000 4000 6000 8000 10,000 12,000

Free-electron temperature, g5, °K

Figure 4. - Comparison of recombination rate as function of electron
temperature between Byron approach and modified D'Angelo model
for cesium.

a manner quite different from the Byron approach and is outlined in appendix C.

CONCLUDING REMARKS

For conventional output power densities of the magnetohydrodynamic gener-
ator, recombination could be a problem, especially below free-electron tempera-
tures of 3000° K because of the strong inverse temperature dependence of the
net recombination rate. However, as others have suggested (Byron, et al.) with
the use of electron beams to "kick up" the electron temperature initially, the
induced field in the generator may then provide "sustained’ electron heating to
keep the electrons at an elevated temperature, thus avoiding the harmful recom-
bination losses. With the "hot" electrons (electron temperature >> gas temper-
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ature) the cesium seeded argon system remains the most promising one for ob-
taining high conductivity at optimum operating conditions in view of the fact
that the net recombination rates calculated for plasmas of interest are not
prohibitive.

Although the accuracy of the method is limited by the cross section ex-
pressions that underestimate the excitation rate and, consequently, the de-
excitation rate, it may be possible to ascribe differences between experiment
and theory to radiation effects in the plasma. ZFor example, if the observed
recombination rate is significantly less than the theoretical rate, the differ-
ence may be attributed to radiation trapping. The method does provide a
straightforward approach for estimating net recombination and has been remark-
ably successful thus far.

The computer program for the recombination calculation is included in ap-
pendix D with explanatory remarks. For any number densities or electron tem-
peratures, the only additional data required are the energy levels, E; values,
and corresponding degeneracy values  for the atom of interest. The 7y fac-
tor can be estimated as described in the text.

Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio, July 27, 1964
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APPENDIX A

SYMBOLS

Einstein coefficient for emission between states K and L, sec™l

normalization factor for Maxwellian distribution
inelastic energy loss for collision, ev
binding energy of level K, Eig, ev

kinetic energy of bound electron (ionization potential of atomic state),
ev

kinetic energy of incident electron, ev
mean binding energy of quantum gap, ev
unit electronic charge, 4.8x10710 esu
Planck's constant, 4.1x1071° (ev)(sec)
h/2x

spin orbit quantum number, 1 * Sp

electronic energy level above gap; K*¥ the electronic energy level
immediately above gap

Boltzmann's constant, 8.6x1075 (ev)(%k~1)

electronic energy level below gap; L¥ +the electronic energy level
immediately below gap

secondary (orbital angular momentum) quantum number

neutral mass, 6.8x1072% g (argon), 2.2x10722 g (cesium)

electronic mass, 9.1x10728 g

free-electron number density, em™3

population of state K, cm™2

population of state L, em=3

ion number density, N, em™

principal gquantum number




|I‘<-‘*‘"

electron-electron collision cross section for momentum transfer, cm?

electron-neutral collision cross section for momentum transfer, cm®

deexcitation rate of bound electrons, (cm~3)(sec™1)
excitation rate of bound electrons, (em~2)(sec~1)

net recombination rate, (cm=3)(sec™1)

total spin quantum number, 1/2 for all cesium atom states
electron-electron relative velocity, (cm)(sec™1)

electron-neutral relative velocity, (cm)(sec™1)
free-electron kinetic energy, ev

collisional recombination coefficient, (cm®)(sec™l)

adjustment factor to account for absence of complete bound-free equilib-
rium and reexcitation effects

temperature of free electrons, °K

cross section constant, 6.53x1071%4 (em?)(ev?)

electron-electron collision frequency for momentum transfer, sec~l

electron-neutral collision fregquency for momentum transfer, sec™®

statistical weight (total degeneracy) of an electronic level K,

2:(2J + 1)
J

15



APPENDIX B

NEGLECT OF RADIATTON

The extent to which radiative emission can be neglected as a deexcitation
mechanism can be assessed from table ITITI, which lists the superelastic colli-
sion frequencies Zvgoy (sec'l) for all deexcitation collisions from a
state K. Each frequency is a reciprocal of the superelastic relaxation time.
This quantity Zvg., 1is the total frequency for deexcitation across a gap
K¥ - 1L* from a state K for Ne of 1015 per cubic centimeter and 65 of
S000° K. 1In comparison, the oscillator strengths for cesium radiation emission
are relatively small for transitions between excited states, while transitions
to the ground state have a maximum frequency AKL of 3x107 per second
(ref. 23). Most of the Einstein coefficients Ayy are at least an order of

magnitude less than this maximum. Since Zvgo 1s much greater'than ZhAxT,

it appears that radiative deexcitation will only become significant for Ng
less than 3x1014% per cubic centimeter at even the lowest electron temperatures.
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APPENDIX C

MODIFTIED D'ANGELO MODEL

A separate approach to the recombination rate was made in this study with
a modification of the D'Angelo model. Reference 4 outlines a treatment whereby
electrons are traced from the continuum after being captured in a three-body
process at a rate R,,,; however, the only downward process included between
electronic levels was radiative transition and the only upward process included
was collisional ionization. This study includes superelastic collisions and
excitation collisions. The inclusion of these processes leads to a divergent
recombination rate if Bohr-Thomson cross sections (see ref. 16) are employed.
This occurs because capture is the limiting step with the inclusion of colli-
sional processes in the modified model. The capture rate naturally diverges
for increasing orbital size and decreasing ionization potential or binding
energy; however, if the bound state distribution is fitted to the Maxwellian
distribution in the manner of a continuous function, as suggested by John E.
Heighway of Lewis, a cutoff is derived for the bound states at 3/2 (k6,), the
average of the free-electron energies. The recombination rate is then calcu-
lated by summing over all states below the cutoff.

17



APFENDIX D

COMPUTER PROGRAM FOR STUDYING RECOMBINATION OF AN ATOMIC ION
by Lynn U. Albers

The computer program was written in FORTRAN IV compiler language for exe-
cution on an IBM 7094 computer under control of the Lewis IBSYS Monitor System.
It consists of a main program, an integration subroutine VQEXI, and a function

subprogram ¥.

The purpose of the main program is to compute the following three sums for
all (L¥,K¥) gaps where K¥ =1* + 1 and 1¥ varies from 1 to the number of

states N:

¥ N+l
RDEX = >, P (D1)
IL=1 K=K*
LY w4+l
F2SUM = 2 Fo(L,K) (D2)
I=1 K=K~
L*
DEXF = 2 F,(L,K¥) (D3)
L=l
where
F1(L,K) = NFo(L,K) (D4)
and

Fo(L,K) = PSE[(EL’EL - By) - I(Bp,E - EK+1):| if K<N

PzI(Eq,Er) if K=N+1 (D5)

1

are equations related to equations (2) and (4) in the text. The parameter Pz
is one of three parameters defined by

GOBﬂ
P = —&— Vg (D6)
0
an 3/2 -
P, = N (g—m—m————— D7
2 e \2mm k6,

18



Prw(L)eAE/kee
Pz = Pz(L,K) = () vhere AE = Ep - By (D8)

The parameter PZ is used in the formula for the population of the
state K:

By /e

Ny = Pow(K)e (D9)

The integral T of equation (DS5) is computed in the subroutine VQEXI and
is defined by

0.1 6,

1

I(E,,AE) = e

G(Ey,Eq ,AB)F(E,E5)Es 4B, (D10)
AR

by using the notation of equations (la), (1b), and (2). In this subroutine,
the whole integrand is denoted by F(EZ) with E; and AE being available in
COMMON. Since some factors in the integrand are likely to be smaller than the
10-38 1imit for single-precision floating-point numbers, precaution is taken to
compute a BIAS for the exponent, which is stored in COMMON and used to bias

the argument of the exponential function every time the integrand is computed
by means of the subprogram F. A compensating scale factor SCAL is included in
the Pz formula for PAR3. The integration is performed by Simpson's Rule in
the routine VQEXI. The integrand has the character of varying widely in a very
narrow domain at the left of the interval and being negligible elsewhere. The
VQEXT routine searches for this narrow interval where the integrand is greater
than 10-° times F(AE) and uses 32, 64, or 128 integration steps to evaluate
the integral.

The Grysinski expressions for AE = R, give falsely negative integrands,
which might throw some doubt on end-point formulas. However, even internal
formulas like Gaussilan quadrature formulas gave the same results, so no error
is involved in the method used. The logic of the VQEXI routine is simple
enough that 1t could be replaced by some other process if further improvement
in execution time is desired.

After the reading in of energy levels and their identification numbers, as
well as conditional input of modified omegas, all parameters independent of
temperature and electron number density are computed. The remainder of the
program accomplishes an iterative input of a temperature and an electron den-
sity and a calculation of an output of the sums defined in equations (D1),
(D2), and (D3).

An earlier version of the program computed the sum for each gap separate-
ly. Since for gaps near the middle this would involve the sum of many terms,
and the computations for adjacent gaps overlap considerably, the program was
modified to compute the sum for one gap from the sum for the preceding gap by
making proper additions and subtractions. When this was first done, each
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addend was computed as needed, once when added, and again when subtracted. By
storing each addend the first time 1t was computed, the execution time could be
halved. The disadvantage of proceeding by augmentation and deletion is that
gums near the end of the process, though composed of a relstively small number
of terms, are masked by the round-off error attendant on adding and subtracting
large terms. Hence, a provision is made for recomputing gap sums from the low
end conditionally for a number of steps.

If one wishes to shorten execution time by neglecting terms between widely
separated states, one can by changing IKD, limit LL to being greater than
L* - KLD, and limit KK to being less than K* + LKD. This, in effect, trun-
cates the sums in equations (D1) and (D2).

As RDEX and F2SUM are computed for each gap, starting at the low end, they
are listed alongside of the labels for IL* and K*, the L* and K* indices,
and the population MNygx of the upper state. Then if NBW is positive, gap sums
are recomputed and listed starting from the high end for the required number of
steps by using the F2 terms stored earlier. The table TAB has five rows of
99 elements each. F28UM and RDEX in the forward sweep are stored in rows 1
and 2. F28UM and RDEX recomputed in the backward sweep are stored in rows 3
and 4. Finally, the DEXF is computed and stored in row 5. If a TABLE 1 value
is negative, this indicates round-off error for this and all higher gaps, and
TABLES 1 and 2 are overwritten by the more accurate TABLES 3 and 4 from this
gap to the top gap. It may be necessary to recompute the tables for a large
number of states from the high end at lower electron temperatures (e.g.,

NBW = 43 at 6, = 1000° K) while at higher temperatures, that is, 5000° K and
above, no recomputation is necessary.

Once this table has been assembled, it is read out in two sections called
table II and table ITI. Table IT lists F25UM, RDEX, and the average ionization
potential for the gap in sets of twenty in such a way that each sum is brack-
eted by the labels and NK’S of the bounding states of its gap. Table IIT

lists DEXF and RDEX in corresponding sets of twenty. After this is done, a
new (Ge,Ne) pair is read in until all cases are treated.

Following is an outline of the main pfogram using FORTRAN symbols. A
dictionary of these symbols with their meanings is given after the outline, and
finally a listing of (1) MAIN, (2) VQEXT, (3) F, and (4) a typical set of data.

OUTLINE OF MAIN
I. Specify constants PI, K, H, SIGZ, and ME.
II. Specify atomic data GSIP, NSTAT, WE, and LKD.
IIT. Read in arrays LAB, EN, and OMEGA.
IV. List OMEGA array, GSIP, WE, and EN array.

V. Provide for states beyond nth,
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S

XT.

XIT.

XIIT.

XIV.

. Compute IP array (loop 1) and list it.

. Read in NE, THETA, NBW and list them.

. Calculate KT, KTHET, PAR1, PAR2, and INF.
. Compute NK array (loop 2) and list it.

. Calculate BIAS and SCAL.

Skip to next page and print headings at top. Set F2SUM and RDEX to zero.
Make forward sweep calculating and storing F2SUM and RDEX for each gap in
TAB matrix, and listing them and associated data line by line (loop 3).
LSTAR runs from 1 to NSTAT.
A. Compute KSTAR, KMAX, IMIN, and El.
B. Augment sums by proper terms for this gap (loop 4) KK =KSTAR to KMAX.
1. Compute DELE, PAR3 for (L*,KK) pair.
2. Do first integral (see eq. (D5)) and store in TERM.

3. Conditionally compute the second integral for (L*,KK + 1) pair
and subtract it from TERM to get FZ2 value.

4. Increment F2SUM, RDEX. Store F2 element in (L*,KK) slot.

C. Subtract proper terms from sums for this gap (loop 5) LL = IMIN to
L* - 1.

1. Obtain F2(1L,L*) from storage.
2. Decrement F2SUM and RDEX.
D. Store final F2SUM and RDEX in Tables 1 and 2 in L¥ slot.
E. List LAB(L¥*), LAB(K*), L¥*, X¥*, F2SUM, RDEX, NK(K*).
Calculate DEXF array and store in Table 5 (loop 6) KK = 2 to NSTAT + 1.
A. Set DEXF to zero.
B. Accumulate in DEXF sum of F2(LL,KK) for ILL = 1 to KK - 1 (loop 7).
C. Store DEXF in Table 5 at slot KK - 1.

Conditionally recalculate F2SUM and RDEX in NBW section storing results
in Tables 3 and 4 (loops 23 and 25).
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Tist heading for this backwards section.

(Loop 23) Recalculate F2SUM and RDEX from equations (D1) and (D2)
for L* = NSTAT down to NSTAT - 5 by using stored F2 values. This
uses loop 24. List results as in XII.E. Store results in TABLES

3 and 4.

(Loop 25) Continue recalculation of F2SUM and RDEX for total of NBW
gaps, but this time use proper augmentation and deletion, as in

loop 5. This uses loops 26 and 27, lists results, as in XII.E., and
stores results in TABLES 3 and 4.

Search last NBW entries in TABLIE 1 to find the lowest gap with
negative entry (loop 28).

Overwrite TABLE 1 with TABLE 3, and TABLE 2 with TABLE 4 for this
gap and higher gaps- (loop 29).

XV. List TABLE 5 entries, six per row (loop 8).

XVI. List tables II and IITI alternately in sets of twenty gaps per page start-
ing from the high end (loop 9).

A.

B.

C.

D.

E.

F.

Page 1 - Last twenty gaps - table II (loop 21).

Page 2 - Last twenty gaps - table III (loop 22).

Page 3 - Next to last twenty gaps - table II (loop 21).
Page 4 - Next to last twenty gaps - table III (loop 22).
Page 5 - Remaining gaps - table II (loop 21).

Page 6 - Remaining gaps - table III (loop 22).

XVII. Skip page. Return to step VII.
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DICTIONARY OF SYMBOLS

BIAS— BIAS IN EXPONENT NECESSARY TO KEEP INTEGRAND IN RANGE
DELE~ DELTA E DR IPtL)-IP(K) NEEDED IN VQEX INTEGRATIDN
DEXF DEEXCITATION FREQUENCYe. SEE EQUATION D3

E1- IONIZATION POTENTIAL FOR L STATE IN VQEX CALCULATION
EN ENERGY LEVEL FOR STATE IN RECIPROCAL CENTIMETERS

F2 FUNCTION 2 DEFINED BY BY EQUATION D5

GSIP—~ GROUND STATE I1ONIZATION POTENTIAL

H- PLANCKS CONSTANT IN ERG~SECONDS

INF— INFINITY FOR VQEX INTEGRATION

1P- IONIZATION POTENTIAL IN ELECTRON VOLTS

K- K IN ERGS PER DEGREE KELVIN

KSTAR-K* THE INDEX DF THE UPPER GAP LIMIT
KTHET~K TIMES THETA IN ELECTRON VDLTS
LAB LABEL FOR A STATE
LKD- LIMIT ON L-K DIFFERENCE TO SHORTEN EXECUTION TIME
LSTAR-L* THE INDEX DF THE LOWER GAP LIMIT
ME- MASS OF ELECTRON IN GRAMS
NBW— NUMBER OF BACKWARD STEPS TO TAKE IN GAP CALCULATIONS
NE ELECTRON DENSITY
NK -~ POPULATION OF STATE
NSTAT-NUMBER OF STATES
OMEGA-TOTAL DEGENERACY FOR STATE
PAR1- PARAMETER 1 DEFINED IN EQUATION D6
PARZ2--PARAMETER 2 DEFINED IN EQUATION D7
PAR3—- PARAMETER 3 DEFINED BY EQUATIDON D8
SCAL- SCALE FACTOR TO COUNTERACT BIAS AFTER INTEGRATION
S1GZ~ SIGMA 2ERO IN CM SQR-EV SQR
TAB- TABLE FOR SUMMARY PURPOSES
TABLE 1 F25UM FROM FORWARD SWEEPe. SEE EQUATIONS D2 AND D5
TABLE 2 RDEX FROM FORWARD SWEEPe. SEE EQUATIONS D1 AND D4
TABLE 3 F25UM RECALCULATED IN NBW SECTION
TABLE 4 RDEX RECALCULATED IN NBW SECTION
TABLE 5 DEXF DEFINED IN EQUATION D3
THETA-TEMPERATURE IN DEGREES KELVIN
WE OMEGA ELECTRON



PROGRAM LISTING

$IBFTC MAIN DECK
C PROGRAM FOR STUDYING RECUMBINATION OF AN ATOMIC ION

DIMENSION LAB(100),EN{100), OMEGA(100)4F2(99,99),NK(99),IP(99)
CUMMCN E1.KTHET,.BIAS,DELE
CIMENSIUN TAB{(5,99)
REAL NEsNK,y IPy) INFoKTHETyKyME, KT,NKS
P1=23.1415927
K=1l.38E—-16
H=6.6256-27
SIGIL=6+53—-14
ME=9.1E-28
GSIEP=31407.
NSTaT=47
Wk=2e.
LKE=G9
READ (5,20) {(LAB(J),ENUJ) 2 Jd=1,NSTAT)

206 FORMAT [6(1I5 LF7.0))
REAL (5,30) (OMEGA({J) »J=1NSTAT)

30 FORMAT (24F3.0)
WRITE (6,40 (OMEGA(J)4J=1sNSTAT) GSIP,WE
WRITE (6440 (EN(J)»J=1,NSTAT)

40 FURMAT {3X410F9.1)
N=NSTAT
NP1l=N+1
NP2=N+2
OMEGA{NP1)=10,
LAB(NP11)=999
EN{NPL)=GSIP
EN{NP2)=GSIP
DO 1 J=1,NP2

1 IP{JI=(GSIP-EN(CJ)) /8067,
WREITE (6,50} (IP(J)rJ=1,4NP2)}

50 FORMAT (4H kP 1P9EL2.5)

11 REAU (5,10) NE,THETA,NBW

16 FORMAT (FLO0.0,F5.0,415)
NE=NE#l.E+13
WRITE (6460} THETAZNE NBW

60 FORMAT (1H1/5X,THTHETA= , F1l1.4,20X,4HNE= 1PE10.1,18}
KT3K*THETA

KTRET=KT/1.6E-12
PARL1=1.30035E-24*NE/KT»SIGZ/SQRTIKT)#PI/SQRT(ME)
X={b/KT)®#{H/ME)/ (2. %PT)
PARZ=NE*NE*X*SQRT{X)/WE
INF=.01=THETA
DU 2 J=1,NPL
2 NKL{J)2PARZ*OMEGA(JI*EXP(IP({J)/KTHET)
WRITE (6,70} (NK(J)sJ=1,NPL)
70 FORMAT {3H XN LP9ElZ.4)
c SECTION TO KEEP INTEGRAND IN RANGE FOR LOWEST GAP
B8I143=0.
EXPUN=—IP(1)}/KTHET
12 IFLEXPL{EXPON)) 13,13,14
13 BiA=BIAS+10.
EXPUN=EXPON-10.
Go 10 12
14 SCAL=1.E-1O0%EXP(-BIAS)
C MAIN LOUP FOR CBMPUTING RDEX SUMS FROM LOWEST TO HIGHEST GAP
WREITE (6,80}
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80

C

35

FORMAT (43HL GAP L# K= F2SUM RDEX NK{K=)
F2SuM20.

RDEX=04

DO 3 LSTAR=I,N

KSTAR=LSTAR+1

KMAX=KSTAR+LKD

IF {KMAX.GT.NP1) KMAX=NP1

LMEIN=LSTAR-LKD

IF (LMIN.:Tal) LMIN=1

LOCP FOR ADDING AND COMPUTING LSTAR-K TERMS

E1=2IP{ESTAR)
DO 4 KK=KS5TAR,KMAX
DELE=IP(LSTAR)}-IP{KK)
PAR3I=PARL#SCAL*OMEGA(LSTAR)/OMEGA(KK)#EXP(DELE/KTHET)
CALL VQEXI(DELE, INF,ANS)
TERM=ANS#PAR3/DELE##2
DELE=IP(LSTAR)-IP{KK+1)
IF (KK.GT.NSTAT) GO 7O 15
CAkL VQEXI{DELE,INF,ANS)
TERM=PAR3*ANS/DELE*#2-TERM
TERM=ABS{TERM)
F2ULSTARKK)=TERM
F23UM2F2SUMETERM
ROEX=RDEX+TERM*NK{KK)
CONTINUE

LOOP FOR SUBTRACTING PROPER L-KSTAR TERMS

LMLI=LSTAR-1

IF (LM1.LT.Lt) GO TO 16
DO 5 LL=LMIN,LM1

TERM= F2{LL,LSTAR)
F23LM=F2SUM-TERM
ROEX=RDEX-TERM*NK{LSTAR)-
CONTINUE
TAB{1yLSTAR}Y=F25UM
TAB{2yLSTAR}=RDEX
NKS=NK{KSTAR )

WREITE (6,90rLABILSTAR)yLAB(KSTAR) yLSTARVKSTAR,F2SUM,RUEX,NKS
FORMAT (219¢p215,1P4E22.4)

SECTION FOR PUTTING UUT SUMMARY TABLES

DU 6 KK=2,NP1

DEXF=0.

D8 7 LL=2,KK
DEXF=DEXF+F2(LL-1,KK)
TABIS)KK-L)=DEXF

IF {NBW.LE.O) GO TO 19

NBW SECTION FOR RECALCULATION OF RDEX AND F2SUM FROM HIGH GAP END

WRITE (6435) NBw

FORMAT (20H BACKWARDS SECTION 15,6H STEPS )
DO 23 J=1s6

I=NP1=J

F23UM=20.,

RDEX=0.

JP=]+1

DC 24 KK=JP4NPL

NKS=NK({KK)

DO 24 L=1,I
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26

24

23

26

27

25

28

29
19

32

33

34

21
17

TERM=F2(L,KK)

F2SUMEF2SUM+TERM

RDEX=RDEX+TERM=NKS

TABI3,1)=F23UM

NKS=AK{JP)

TABl4y1)=RDEX

WRITE 16,90k LAB(I) LAB{JP)y1,JP,F25UM,RDEX,NKS

DU 25 J=T7,NBW

I=NP1-J

JT=14+2

JPal+]

NKS=NK(JP)

DO 26 L=1,1

TERM=F2{L,JP)

F2SuM=F2SUM+TERM

ROEX=ROEX+TERM=NKS

DO 27 KK=JT¢NP1

TERM=F2{JP KK}

F25UM=F2SUM~TERM

RDEX=RDEX-TERM*NK (KK}

TAB{3,1)=F23UM

TAB(4y1)=RDEX

WREITE (6,90} LASUI)2LABCJP) yI14JPsF25UMRDEXINKS
REPLACE TABLE 1 AND 2 VALUES WITH BETTER ONES WHEN AVAILABLE

JT=¢

D0 28 J=1,.NBW

L=NPl=J

IF (TAB(1,L).GE.Oe) GO TO 28

JI=L

CONT INUE

IF [JT.LE.OQ) GO TO 19

DO 29 L=JT1,N

TABIL,L)=TAB(3,L)

TABL2,L)=TAB(4,L)

DO 8 JA=1,N3TAT,6

JB=2JA+5

WREITE (6431 JAL(TAB(5¢Jd)yd=JA,J4B)

FURMAT (3X415,1P6E14.5)

KA3NSTAT-19

DO 9 JA=1,NSTAT,20

Kw=22

KB=KA+20

WRITE (64321 K8yKW

FORMAT (6H1 K= 12,I5//2H )

WRITE [6,33) LABIKB),NK{KB)

FORMAT (5%, E5428%Xy1PEL4.2)

DO 21 JB=1,20

Kg2KB-1

IF (KB.LT&l} GO TO 17

AVIP=.5#([PEKB}+IP(KB+1))

WRITE (6,34 TAB(1,KB),TAB(2,KB),AVIP

FURMAT (1OXylP2El4s2914X,0PF9.3)

WRITE (6,33} LAS(KB)4NK(KB)

CONTINUE

KW=3

K8=KA+20



WREITE (64932} KB.KW
WRITE (6433) LAB(KB),NK(KB)
0O 22 JB=1,20
KB*KB~-1
IFf (Koe.LE.OY GO TO 18
WRITE (6,34 TAB(S5,KB),TAB(2,KB)
. WRITE (64933) LABIKB)yNK(KB)
22 CONTINUE

9 KA=KA-20

18 Kw#2
WRITE (6,4,32) K8)KHW
GO 1C 11
END

$IBFTC VQEXH
SUBRCGUTINE VQEXI [ XL, XUy ANS)
X=XL
Y=XUL
D={Y=X}/512.
XA=2X+D
E=1eE-5%#ABS(F (X))
12 IF (A8S5(F{XA)).LT.E) GO TO 11
XA=2XA+D
[F (XA .LTaY) GU TO 12
11 Y=XA-=U
D=lY=X)/32,
V2=U+D
N=lé
T=X+02
S=FL(T)
DO 1 J=34N
T=1+C2
1 S=S+F(T)
A=(F({X)+F(YX+2.%5)%D/ 3.
T=X+0C
S=FIT)
DO 2 J=24N
T=T+C2
2 S=S$+F(T)
B=4.x52D/3.
R=A+B
E=.CO001#ABS(R)
IF (E) 5457
K DO 3 Jd=1,2
zab#[{A+]1.5%8)
D2=b
D=4 5%#D
N=2#N
T=X+C
S=F{T)
DO 4 K=24N
T=T+C2
“ S=3+F(T)
B=4ax320/3.
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A=R-C

R=A+B

W=AB8S{8-C)

IF {(W—E) 545,+3
3 CONTINUE
5 ANS=R

RETURN

END

$IBFTC F
FUNCTICN FLARG)
COMMGN E1,KTHET,BIAS,DELE
REAL KTHET
E23 ARG
IF [C6GT.04) GO TO 3
C622./3.
3 Elk2=El/E2
DEEZ2=DELE/EZ2
E2ES=E2/(EL1+%E2)
IF [ (DELE+EL).GT1.E2) GO T0 2
C EQUATEIUN 1A
C=Co6=*E1E24DEE2*(1.—E1E2)—DEE2%*%2
GO IC 4
C EQUATECN 1B
2 G=Con{E1E2+DEE2# ((1o~—EL1E2)~DEE2%#2) #SQRT{(1.+DELE/EL)=(1.—-DEE2))
4 F=EJEL#SQRTLEE2ES) xGEXP(BIAS-E2/KTHET ) *#E2+#1.E10
RETWRN
END
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SAMPLE DATA

$CATA
600
701
801
504
604
1101
903
1103
2 2
40 2

c
21766
25709
27010
28351
29404
30043
30495

4 4
4 10

601
701
801
901
1001
1101
1301
1501
6 2
2 14

100 1¢co
100 5G00

11178
21947
25792
27637
28727
29421
30170
30566
2 4
2 4

43
00

601
602
702
901
1001
1002
1202
1402
4 6
10 16

11732
22589
26048
27681
28754
29471
30198
30581
2 14
6 10

502
602
702
802
902
1200
1003
1203
2
14

14499
22631
26069
27816
28832
29675
30302
30641

10 14

502
800
300
1000
i100
1201
1401
1601
2 14
6 10

14597
24317
26911
28300
29130
29859
30393
30694
18 2
14 6

700
403
503
603
703
1102
1302

4 10
10 14

18535
24472
26971
28330
29148
29898
30417

2 14
6
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TABLE I. - QUANTUM NUMBERS, IONIZATION POTENTIALS, AND STATISTICAL WEIGHTS OF ELECTRONIC LEVELS USED IN CALCULATIONS

Electronic Principal Spin orbit [ State binding|(Total statisti-j{Electronic Principal Spin orbit|State binding|Total statisti-
energy and secondary| quantum energy (ioni-|cal welght of energy and secondary | quantum energy (ioni-|cal welght of
level, (orbital) number, zatlon poten- |quantum state level, (orbital) number, |zation §oten— uantum state
Kor L quantum J tial), degeneracy), Kor L guantum J tilal), ?degeneracy)

number, El’ number, . El’
n, 1 v e = §(2J + 1) n,1 ov o = §(2J + 1)

16p,p’ aie,1 1,51 8.83 E-02 6 10s 210,0 1 3.85 E-O1 2

2’72 4 2
127, £ 212,35 2%,3% 9,49 E-02 14 8d,d’ ag, 2 1%2% 4.45 E-01 10
14d,d’ a1s,2 14,2l 1.02 E-01 10 9p" 9,1 il 4.61 E-O1 4
o P 1.1 1
15p,p 12,1 1% 1.04 E-O1 5 9p 9,1 z 4.67 E-01 2
117,81 a1,3 ol sl 1.13 E-01 14 5g,8" ag, 4 3,41 5.45 E-01 18
2’72 4 22

13d,4d’ 213,2 1%, 2% 1.22 E-O1 10 sr,f! ag, 3 2%% 5.49 E-01 14

14p,p° a14,1 %,1% 1.25 E-O1 8 9s 29,0 % 5.57 E-O1 2

107,£" 210,3 2%,3% 1.36 E-O1 14 7d’ 7,2 2% 6.61 E-01 8

12d,d' a12,2 1%, 2% 1,49 E-01 10 74 7,2 % 6.64 E-01 4

13p,p’ 813,1 %, 1% 1.53 E-O1 8 sp! 8,1 1% 6.96 E-01 4

of, ! 29,3 2%,3% 1.69 E-O1 14 8p 8,1 % 7.06 E-O1 2
114,4d" a11,2 13,23 1.87 E-O1 10 4, £ 2,3 2%,3% 8.59 E-01 14
12p,p' a1 % 1% 1.92 E-01 5 8s ag,o % 8.78 E-01 2

er,f',12s | 2v,3,212,0 2%,3%,%— 2.14 E-01 16 6a 6,2 2% 1.07 E-00 6

104,d" 210,2 1%, 2% 2.40 E-01 10 6d 6,2 1% 1.09 E-00 4

11p* 11,1 1% 2.46 E-O1 4 7p’ 7,1 1% 1.17 E-00 4

11p 11,1 % 2.48 E-O1 2 7p 7,1 -;- 1.19 E-00 2

7f,£1 27,3 2%3% 2.80 E-01 14 7s a7,0 % 1.59 E-00 2

11s 211,0 .;. 2.82 E-O1 2 5q! 5,2 % 2.08 E-00 6

ad,a’ ag,2 1L, % 3.19 E-OL 10 5d 5,2 1% 2.09 E-00 4

2

10p' 10,1 % 3.28 E-O1 4 6p* 6,1 1; 2.43 E-00 ¢

10p 10,1 % 3.32 E-O1 2 6p 6,1 % 2.50 E-00 2

6g,g',h,h' ag,4,26,s |3%,4% 4%,54 5.79 E-01 40 6s 25,0 1 3.89 E-00 2

& 20 %57 %5073 z

67, 0" ag, 3 ol 31 81 E-01 14

s 53 5055 3.

a,
Levels degenerate in J value.

32




Electronic
state
(47 to 1
inelusive),
K

K=47 16,1
12,3
14,2
15,1
11,3
13,2
14,1
10,3
12,2
13,1

9,3
11,2
12,1

12,0;8,3
10,2
11,1
11,1

7,3
11,0

9,2
10,1
10,1

6,4;6,5

a
(Rdex)min

TABLE IT. - SUPERELASTIC COLLISION FREQUENCIES AND DEEXCITATION RATES ACROSS ELECTRONIC QUANTUM GAPS

[Free-electron number density,

Superelastic
collision
frequency

across gap

K* to L,
L=K*-1 K=47

2: E: Vsex’
L=l K=K*
sec™1

1.85E
9.56E
5.22E
9.49E
5.59E
2.26E
6.16E
3.42E
1.87E
3.38E
1.93E
9.05E
1.95E
1.02E
4,.84E
3.42E
1.59E
9.58E
1.02E
2.B63E
1.47E
2.17E
1.87E

for (128, 8f-+104) gap; R

Deexcitation
rate across
gap,

K* to L*,
Rdex’

-1

m 2 sec

¢}

2.28E 24

1.86E 24
1.11E 25
1.61E 24
1.38E 24
6.02F 24
1.29E 24
1.08E 24
6.07E 24
9.59E 23
8.44E 23
5.00E 24
8.25E 23
27.50E 23
4.88E
1.63E
8.58E
2.15E
9.55E
5.91E
1.84E
2.64E

3.40E

rec

Popula-
tion of
state K,

Ng»

em™3

1.10E 11
2.76E
2.15E
1.32E
3.41E
2.72E
1.69E
4.50E
3.73E
2.33E
6.53E
5.74E
3.64E 11
1.27E 12
1.06E
4.56E
2.34E
2.36E
3.46E
2.86E
1.19E
6.18E

2.12E

= % (7.50x1023)

1015 cm—s; free-electron temp~rature, 1000° K.]

Mean gap
energy,

E*

]
ev

0.092
.099
.103
+109
.118
.124
+131
.143
.152
161
.178
.189
203
227
.243
«247
264
.281
301
324
+331
.356

.380

Electronic
state
(47 to0 1
inclusive),
K

K=24 8,3
10,0
8,2
9,1
9,1
5,4
5,3
9,0
7,2
7,2
8,1
8,1
4,3
8,0
6,2
6,2
7,1
7,1
7,0
5,2
5,2
8,1
6,1

6,0

Superelastic
collision
frequency

across gap

K* to L*,
L=K*-1 K=47

> > Veer’

=1 K=K*

sec™l

2,71E 12
3.10E 11
7.76E 11
5.20E 12
4.53E
1.30E
8.61E
1.13E
2.79E 13
3.29E 11
1.38E 12
8.93E 10
1.29E 11
3.10E
6.19E
4.82E
2.52E
4.57E
7.85E
9.15E
3.26E
2.09E

9.54E

2.50x102% cm™3 gec™l.

Deexcitation
rate across
gap,

K* to L*,

Rdex’

-3

sec L

cm

2.47E 25

9.24E 23
7.46E 24
2.97E 25
2.30E 24
6.50E 26
4.19E 25
1.75E 24
2.36E
2.29E
1.14E
4.97E
2.11E
1.36E
7.31E
4.37E
5.14E
4.28E
7.20E
1.12E
2.09E
1.00E

4.64E

Popula
tion of
state K,

Ngs

em™3

7.66E
1.14E
1.14E
5.56E
2.96E
5.10E
5.40E
8.41E
8.46E
S5.81E
8.40E
4.73E
1.96E
3.50E
1,18E
8.38E
2.11E
1.37E
1.42E
1.22E
9.40E
5.01E
5.56E

5.27E

Mean gap
energy,
*

E ’
ev

0.383
.415
454
465
.506
.547
.554
.610
.663
.680
.701
.783
.869
.983

1.090

1.133

1.184

1.395

1.840

2.090

2.267

2.473

3.200
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TABLE TII. -~ SUPERELASTIC COLLISION FREQUENCIES FROM ELECTRONIC STATES AND DEEXCITATION RATES

ACROSS ELECTRONIC QUANTUM GAPS

[Free-electron number density, 105 cm™3; free-electron temperature, 5000° K.]

Electronic | Deexcitation Deexcitation| Popula- Electronic| Deexcitation Deexcitation
state frequency rate across tion of state frequency rate across
(47 to 1 from state K gap state K, (47 to 1 from state K gap
inclusive),|(superelastic),| px - N, inclusive) | (superelastic), M
K L=K-1 K to It K K L=K-1 K to L7,
=K~ R 3 =K~
v , dex’ em 2: v , Raexs
sek* sek*
=1 em™2 sec™l =1 em™3 sect
sec? sec-1
K=47 16,1 4.32E 09 |lk=24 6,3
1.41E 13 9.26E 22 3.61E 12 1.14E 23
12,3 1.02E 10 10,0
4.28E 12 7.34E 22 1.51E 11 4.71E 21
14,2 7.45E 09 8,2
4,B86E 13 3.98E 23 1,.14E 12 2.12E 22
15,1 4,49EF 09 9,1
3.42E 12 6.07E 22 9.23E 12 7.08E 22
11,3 1.07E 10 9,1
2.82E 12 4,97E 22 2.05E 11 5.85E 21
13,2 7.80E 09 5,4
2,188 13 1.94E 23 2,60E 13 7.61E 23
14,1 4.72E 09 5,3
2.76E 12 4,31E 22 9.89E 11 4.75E 22
10,3 1.136 10 3,0
1.78E 12 3.37E 22 5.88E 10 2,138 21
12,2 8.31E 09 7,2
1.78E 13 1.64E 23 6.17E 13 1.01E 24
13,1 5.03E 09 7,2
1.42E 12 2.71E 22 1.20E 11 1.01E 22
9,3 1.22E 10 8,1
1.07E 12 2.16E 22 2.87E 12 3.69E 22
11,2 9.06E 09 8,1
1.05E 13 1.05E 23 3.53E 10 1.67E 21
12,1 5.50E 09 4,3
8.57E 11 1.81E 22 2.64E 11 1.83E 22
12,0;8,3 1.55E 10 8,0
5.54E 11 1.41E 22 2.00E 10 1,01E 21
10,2 1.02E 10 6,2
6.16E 12 7.01E 22 1.66E 13 7.29E 23
11,1 4.16E 09 6,2
4.72E 13 2.19E 23 1.77E 10 4.39E 21
11,1 2.09E 09 7,1
5.66E 11 1.26E 22 6.50E 11 2.43E 22
7,3 1.%7E 10 7,1
1.38E 13 2,22E 23 1.25E 09 2.02E 20
11,0 2.26E 09 7,0
3.80E 11 1.10E 22 1.55E 10 8,52E 20
9,2 1.23E 10 5,2
3.27E 12 4.68E 22 3.03E 12 1.34E 24
10,1 5.04E 09 5,2
2.20E 13 1.31E 23 7.10E 08 2.43E 21
10,1 2.54E 09 6,1
9.64E 11 1.98E 22 6.95E 10 4,73E 22
6,4;6,5 5.65E 10 6,1 a
2.80E 13 1.59E 24 7.64E 07 1.32E 20
8,0
a(Rdex)min for {6p~6s) gap; Rpee = % (1.32X1020 em™2 sec l) = 6.6x1019 om™® sec l.

Popula-
tion of
state K,

1.99E 10
2.87E 09
1.65E 10
6.85E 09
3.47E 09
2.91E 10
2.94E 10
4.28E 09
1.63E
1.10E 10
1.18E
6.04E 09
6.03E 10
9.01E 09
4.39E 10
2.96E
3.56E
1.88E
4.75E
4.42E 11
3.03E 11
6.71E 11
3.94E 11
9.78E 12

NASA -Langley, 1964




